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Volitional control of individual neurons in
the human brain
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See Rubin and Paulk (doi:10.1093/brain/awab413) for a scientific commentary on this article.

Brain-machine interfaces allow neuroscientists to causally link specific neural activity patterns to a particular be-
haviour. Thus, in addition to their current clinical applications, brain-machine interfaces can also be used as a
tool to investigate neural mechanisms of learning and plasticity in the brain. Decades of research using such
brain-machine interfaces have shown that animals (non-human primates and rodents) can be operantly condi-
tioned to self-regulate neural activity in various motor-related structures of the brain. Here, we ask whether the
human brain, a complex interconnected structure of over 80 billion neurons, can learn to control itself at the most
elemental scale—a single neuron.

We used the unique opportunity to record single units in 11 individuals with epilepsy to explore whether the firing
rate of a single (direct) neuron in limbic and other memory-related brain structures can be brought under volition-
al control. To do this, we developed a visual neurofeedback task in which participants were trained to move a
block on a screen by modulating the activity of an arbitrarily selected neuron from their brain.

Remarkably, participants were able to volitionally modulate the firing rate of the direct neuron in these previously
uninvestigated structures. We found that a subset of participants (learners), were able to improve their perform-
ance within a single training session. Successful learning was characterized by (i) highly specific modulation of the
direct neuron (demonstrated by significantly increased firing rates and burst frequency); (ii) a simultaneous decor-
relation of the activity of the direct neuron from the neighbouring neurons; and (iii) robust phase-locking of the
direct neuron to local alpha/beta-frequency oscillations, which may provide some insights in to the potential neur-
al mechanisms that facilitate this type of learning.

Volitional control of neuronal activity in mnemonic structures may provide new ways of probing the function and
plasticity of human memory without exogenous stimulation. Furthermore, self-regulation of neural activity in
these brain regions may provide an avenue for the development of novel neuroprosthetics for the treatment of
neurological conditions that are commonly associated with pathological activity in these brain structures, such as
medically refractory epilepsy.
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Introduction

Advances in physical and computational tools continue to inspire
the development of devices to interrogate brain circuits and re-
store lost neural functioning. While the motor system has long
been a target for such devices, there is an emerging interest in
neuromodulatory as well as neuroprosthetic technologies for
the interrogation and augmentation of cognition—in particular
memory.’™ The seminal work of Eberhard Fetz in the late 1960s
demonstrated that with the appropriate feedback and reward,
monkeys can learn to control the activity of individual neurons
in the primary motor cortex.®” More recent work using advanced
imaging and stimulation technologies in transgenic mice has
demonstrated intentional neuroprosthetic learning of individual
neurons within primary motor and visual cortices.®** Whether
such high-fidelity neuroprosthetic skill learning can be acquired
in memory-related structures of the human brain remains
unknown.'**

At large spatial scales, scalp EEG has provided varied, albeit
supportive literature regarding the efficacy of biofeedback to
control oscillatory power in non-motor regions of the human
brain.’>™® On a mesoscopic scale, intracranial EEG recordings have
shown humans can control oscillations in the local field potential
(LFP) within medial temporal lobe structures.”®?! Few have even
reported the possibility of controlling neuronal activity in human
medial temporal lobe,?> and other motor-related structures?,
however, such control relied on invocation of previously identified
concepts or motor imagery. Thus, it remains unknown whether
operant conditioning of individual neurons within memory
structures of the human brain is possible.

To explore this question, we exploited the unique opportunity
to obtain human single neuron recordings from limbic and other
memory-related brain structures of epilepsy patients undergoing
diagnostic depth-electrode recordings. We developed a closed-
loop real-time instrumental learning task, where visual feedback
is provided to participants as they try to learn to increase the fir-
ing rate of an arbitrarily chosen neuron. We show that: (i)
humans can volitionally increase the firing rate of arbitrary indi-
vidual neurons in these regions; (ii) as with all forms of instru-
mental learning, only a subset of participants learn the task
(learners); and (iii) only learners demonstrated an increase in
local spike field coherence (SFC), with the strongest SFC in the
beta band (an oscillation not commonly investigated in these
regions). Our findings show that: (i) instrumental learning to con-
trol arbitrary individual neurons is possible in the human brain;
(ii) that such learning is possible outside of primary motor and
sensory areas, and of particular interest, in mnemonic structures;
and (iii) intriguingly, the unique beta band SFC signature of learn-
ers may provide insights into the neural mechanisms that facili-
tate this type of instrumental learning within these mnemonic
structures of the human brain.**?*

Materials and methods

Participants were implanted with commercially available depth
electrodes (Behnke-Fried Macro Micro, ADTech Inc) that have 8-10
macroelectrodes along the electrode shaft, and a bundle of eight
microwires splayed out from the tip, plus one ground/reference
microwire. The number and location of the electrodes varied be-
tween participants and were determined solely based on the clin-
ical hypothesis of the epileptogenic zones(s). Electrode localization
was performed by coregistering preoperative MRI with postopera-
tive CT using the iELVIS toolbox.?® Following localization, the pre-
cise location of each of the electrodes was determined, and later
verified by a neurosurgeon.

Electrodes were connected to the Neuralynx Atlas Data
Acquisition System (Neuralynx Inc, Bozeman, MT). The macroelectr-
odes were sampled at 4kHz with a 16-bit resolution and bandpass
filtered in hardware between 0.1 and 1kHz. The microelectrodes
were sampled at 32kHz with a 16-bit resolution and were bandpass
filtered in hardware between 0.1 and 8 kHz. A four-contact subgaleal
electrode was used for ground and reference and was placed over
the parietal midline facing away from the brain. The microelectrodes
were referenced locally, to one of the eight wires within the same
bundle. Neural data were synchronized with behavioural data using
TTL triggers sent over Neuralynx’s NETCOM protocol.

Online spike detection/sorting was used to drive the neurofeedback
task (see the ‘Neurofeedback task’ section). Microelectrode channels
were bandpass filtered between 300 and 3000 Hz,?® and thresholded
at five times the root mean squared amplitude. Channels in non-
motor regions with well-isolated spikes were sorted using the
KlustakKwik toolbox in SpikeSort3D (Neuralynx Inc., Bozeman, MT).
Sorted templates for each channel were then sent back to the
recording software, Pegasus (Neuralynx Inc., Bozeman, MT). The in-
stantaneous timestamps of sorted neurons were then streamed to
custom-written scripts in MATLAB (Mathworks Inc., Natick, MA)
over the Neuralynx NETCOM protocol. Although online spike sorting
was performed on numerous channels, only the online spike train
of the direct neuron (i.e. the neuron being trained) was used for post
hoc analysis. The remainder of the neurons (i.e. the indirect neurons)
were detected and sorted offline.

For offline spike detection, all microelectrode channels were
bandpass filtered between 300 and 3000 Hz, and spikes were sub-
sequently detected using threshold crossings of a local energy
measurement, calculated by convolving the raw signal with a ker-
nel of approximate width of an action potential. All detected
spikes were sorted using the semiautomatic template-matching
algorithm OSort, which is available as open source.” Similar to
previous work,?® we classified clusters as putative single neurons
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by looking at the following criteria: (i) violation of refractory period;
(ii) shape of the interspike interval distribution; (iii) shape of the
waveform; and (iv) separation from other clusters. Clusters that
appeared similar to one another were merged, and clusters that
were either contaminated with noise or failed the meet the criteria
described were rejected. For the accepted clusters, the individual
waveforms, along with the timestamp of each spike and its cluster
definition were saved.

We developed a novel, low-latency intracranial neurofeedback
task in which the vertical movement of a red square on a screen
was controlled by the smoothed instantaneous firing rate of a
well-isolated neuron (called the direct neuron) from a mnemonic,
non-motor structure in the human brain (Table 1). The direct neu-
ron was chosen by the experimenter such that it was (i) well iso-
lated from background noise; (ii) not contaminated by movement
artefacts; (iii) had <3% of interspike intervals below 3ms?; and
(iv) had a baseline firing rate >0.5Hz. The spike timings of the
chosen, online sorted direct neuron were streamed to custom
scripts in MATLAB using the Neuralynx NETCOM protocol. The
spike timings were used to create a spike train, which was stored
in a 2-s first-in-first-out buffer that was updated every ~40ms.
This spike train was then smoothed by convolving it with a 200-
ms Gaussian kernel. The instantaneous value of the smoothed
spike train was used as the control signal. Our visual neurofeed-
back task was developed using Psychtoolbox, and consisted pri-
marily of a red square capable of moving vertically on a screen,
along with a white horizontal line indicating the target (Fig. 1). The
vertical movement of the red square was controlled by the
described control signal. Each participant was asked to modulate
their brain activity to move the square above the target line and
hold it there for at least 0.5s. Every time the block went above the
target line, its colour was changed to purple to clearly identify to
the participant that the block was above the line.

Each testing session began with a ~4-min baseline session in
which participants stared at a fixation cross for 1 min, followed by
a 1-min eyes-closed period, followed by passively viewing a red
square moving on the screen for 2min. All participants were
instructed to minimize body movements throughout the session,
and any trials with overt physical movements were noted and

Table 1 Participant demographics
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later rejected. Following the baseline session, an appropriate well-
isolated neuron with a firing rate above 0.5Hz was chosen as the
neuron to be trained. If the individual participated in more than
one training session, we ensured to choose a neuron from a differ-
ent electrode, to ensure independence of each session. Using this
well-isolated neuron, we then performed a short, ~5-min training
and familiarization session in which we asked the participant to
modulate their brain activity to move the block on the screen. This
session was also used to determine an appropriate starting diffi-
culty for the task (i.e. the position of the horizontal target bar on
the screen). An appropriate difficulty level was defined as a mul-
tiple of the standard deviation of the baseline firing rate of the
selected neuron, chosen such that the participants required ~60s
to achieve success. To prevent biasing each participant’s unique
control strategy, we never provided the participants with explicit
instructions on how to modulate their neural activity.
Furthermore, literature suggests that participants who report no
specific control strategies demonstrate better neurofeedback per-
formance than those who report specific mental strategies.'®?°

Following the familiarization/training portion, we moved onto
the primary testing portion of the session. This portion was div-
ided into several blocks, consisting of 10 trials each. Each trial
began with a start message, following by a fixation cross (3s), fol-
lowed by the actual trial in which the participants volitionally
moved the red square on the screen. Each trial continued until the
participant was successfully able to push the block above the line
and hold it there for 0.5s. This resulted in a ‘Trial Successful’ mes-
sage (1s) followed by a distractor math question (i.e. addition of
three integers between 1 and 5). Answering the question triggered
the start of the next trial. Participants were instructed to try and
complete each block of trials (i.e. 10 trials) in 10min or less. If the
participants successfully completed all 10 trials in <10min, the
difficulty of the next trial was marginally increased (by increasing
the target threshold by 0.2 standard deviations). Participants were
required to complete at least three blocks of testing, or 30 trials.
Sessions in which testing was interrupted before the minimum
number of trials were completed were not used in the analysis.
Testing was continued up to a maximum of 12 blocks, or stopped
earlier if otherwise interrupted by visitors, clinical interventions or
self-reported fatigue. After the testing session, a post-testing base-
line session was performed, which mirrored the pretesting base-
line session described previously.

Session ID Patient ID Sex Handedness Learner Direct neuron Hemisphere Trials Age
session? anatomy completed, n

1 1 Male Right Yes Lateral orbitofrontal Left 50 25.1
2% 1 Male Right Yes Lateral orbitofrontal Left 53 25.1
3 2 Female Right No Amygdala Left 39 46.1
4 3 Female Right Yes Hippocampus Right 117 20

5 3 Female Right No Insula Right 77 20

6 4 Female Left Yes Hippocampus Left 77 25.5
7 5 Male Right Yes Amygdala Right 30 26.2
8 5 Male Right Yes Amygdala Left 39 26.2
9 6 Male Right Yes Lingual cortex Left 59 38.1
10 6 Male Right Yes Hippocampus Left 59 38.1
11 7 Male Right Yes Hippocampus Left 94 28.5
122 8 Female Right No Hippocampus Left 48 25.9
13 9 Male Right No Hippocampus Right 48 24.6
14 9 Male Right No Amygdala Right 52 246
15 10 Male Right/Left No Hippocampus Right 29 25.3
16 10 Male Right/Left Yes Hippocampus Right 48 253
17 11 Male Right No Amygdala Right 47 28.1

“Missing macro data.
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Figure 1 Visual neurofeedback task for modulating single neuron activ-
ity in the human brain. (A) Schematic showing the overall setup of the
neurofeedback task. Single unit activity is extracted from the micro-
wires in implanted Behnke-Fried Macro Micro electrodes (AdTech)
using the Neuralynx Atlas Digital Lynx system. Neurons from relevant
channels were sorted online (using templates created with the
KlustakKwik algorithm), and streamed over the Neuralynx NETCOM
protocol to custom scripts in MATLAB. These streamed, online spike
trains were smoothed using a 200-ms Gaussian kernel to extract the in-
stantaneous firing rate, which was then used as the control signal for
the task. The neurofeedback task itself involves a red square moving
vertically in response to the instantaneous firing rate of the chosen
neuron. A horizontal white line indicates the target threshold, the
crossing of which for 0.5 s results in a successful trial. (B) Schematic
showing the experimental design, and order of a single testing session.
An initial baseline session was performed, followed by 5 min of famil-
iarization/training (during which an appropriate task difficulty is
chosen). Following this, the testing phase began, which consists of at
least three blocks (of 10 trials each). Each trial ended with a success,
and each block was required to be finished in 10 min or less. Testing
continued until a maximum of 12 blocks. Following testing, another
baseline session was performed. (C) Schematic showing a single testing
trial. Each trial began with a start message indicating the goal, followed
by a fixation cross, followed by the actual trial. Each trial ended with a
success message, followed by a quick distractor question involving the
addition of three small integers.

All analyses were performed in MATLAB with custom-written rou-
tines and with the aid of open-source toolboxes where possible.
All LFP data were low-pass filtered at 250Hz, downsampled to
1kHz and notch filtered at 60, 120, 180 and 240 Hz. Online and off-
line spike times were used to create binary spike trains with a bin
width of 1ms (corresponding to 1kHz sampling). Signal to noise
ratio (SNR) was calculated as the peak-to-trough amplitude of the
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average neuron waveform, divided by the standard deviation of
the waveform residuals after the mean waveform was
subtracted.*®

Firing rates were calculated by convolving the binary spike
trains with a scaled 200ms Gaussian (¢ = 200ms). Average firing
rates correspond to the mean of the smoothed spike train in each
trial. Peak firing rate corresponds to the maximum of the Gaussian
convolved smoothed spike train in each trial. Modulation depth
(MD) of each neuron was calculated as the average firing rate in
the 1-s window before success minus the average firing rate in the
1-s window after success. Bursts were detected using a non-para-
metric version of the commonly used Poisson-surprise method,
called the rank-surprise method,*! which identifies bursts on the
basis of the probability that a given number of spikes occur in a
given duration, given the overall distribution of the interspike
intervals for a particular neuron. Burst frequency was defined as
the total number of bursts in each trial divided by the duration of
each trial. A session was marked as ‘Learner’ if a linear regression
of the average or peak firing rate with the trial number resulted in
a significant positive slope. i.e. ‘Learner’ sessions were those in
which there was a significantly positive trend in the average and/
or peak firing rates within a single testing session. All other ses-
sions were marked as ‘Non-Learner’. In all analyses, the term
‘early’ corresponds to the data from the first 15 trials of the testing
session, and ‘late’ corresponds to data from the last 15 trials of the
testing session. This definition was chosen since the minimum
number of trials completed by each participant was 30. Correlation
of the direct neurons with the neighbouring indirect neurons was
examined by calculating Pearson’s correlation coefficient between
the binary spike train of the direct neuron, and the binary spike
trains of all neighbouring indirect neurons. For each trial, the pair-
wise correlations between the direct neuron and all neighbouring
indirect neurons were averaged. Early to late changes in correl-
ation (i.e. Acorrelation) Were calculated by taking the average pair-
wise correlation coefficient in the ‘late’ trials and subtracting the
average pairwise correlation coefficient in the ‘early’ trials.

All spectral analyses were performed using the open-source
Chronux toolbox (http://chronux.org) for MATLAB. Spectral esti-
mates were obtained using a multi-taper method, with a total of
five tapers and a time-bandwidth product of three. For all spectro-
grams, a moving window size of 1s was used (to accurately resolve
frequencies as low as 1Hz), with a step size of 50ms. SFC was cal-
culated as shown in Equation (1):

Ry

C= —— 9
VRxx\/Ryy

(1)

where Ry, and Ry, are the power spectra of the spike train and LFP
oscillation, respectively, and R,y is the cross-spectrum. All local
SFC values were calculated between any given putative neuron
and the closest macroelectrode to ensure that the spiking activity
itself did not contaminate the power spectrum of the recorded
oscillations. Since SFC estimates can be affected by the firing rate
of the selected neuron, we performed a probabilistic spike thinning
procedure to equate the firing rate of the early and late trials.?> To
do so, we convolved the binary spike trains with a 10-ms Gaussian
kernel, and averaged them across trials. Next, we determined the
probability that a spike should be removed at any given point in
time by subtracting the early and late firing rates at each point in
time, and dividing by the maximum rate in the early and late trials
at that point in time. Using this probability train, we randomly
removed spikes from the original spike trains. For example, if the
probability value at any given point in time was 50%, then the
probability that a spike in the late trials at that point in time was
removed was 50%, resulting in roughly 50% of the spikes at that
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point in time being removed. We verified that the spike thinning
procedure successfully eliminated any differences between the fir-
ing rate between the early and late trials (Supplementary Fig. 6).

Unless otherwise specified, the bold line in all figures corresponds to
the mean of the data, and the shaded area and/or the error bars cor-
respond to the SEM. In all box plots, the shaded box corresponds to
the SEM, and the bold vertical line corresponds to the standard devi-
ation. All means, standard errors and statistical tests were calcu-
lated across sessions. The number of participants or sessions
contributing to each figure is indicated with the corresponding n-
value. Wherever necessary, data outliers were removed using the
Grubbs outlier test. Wherever possible (given data normality and ab-
sence of outliers), parametric tests were used to test for significance.
Otherwise, non-parametric equivalents were used. When determin-
ing significant fluctuations in averaged waveforms (time-aligned or
power spectra), a non-parametric permutation test was using with
random time shuffling and 2000 iterations. The specific statistical
test used for each figure is stated clearly in the text and/or in the fig-
ure legend. The data epoch being analysed in any particular figure is
clearly labelled and described in the figure legend. Significance for
all statistical tests was set at P < 0.05. A single asterisk indicates sig-
nificance at the P < 0.05 level, double asterisk indicates significance
at the P < 0.01 level and a triple asterisk at the P < 0.001 level. All
statistical tests were performed using either custom scripts or built-
in functions in MATLAB.

The spike detection and sorting toolbox used for offline sorting
(OSort), and the Chronux toolbox (use for spectral analysis) are
both available as an open-source toolboxes. Data and custom
MATLAB scripts used for analysis here are available on reasonable
request from the corresponding author.

Results

We developed a neurofeedback task that required upregulation of
the firing rate of an arbitrarily chosen neuron (henceforth called
the direct neuron) (Fig. 1 and Table 1; see the ‘Materials and meth-
ods’ section for details on the choice of the direct neuron). Direct
neurons were well isolated (SNR =4.76 1.38) and largely free of ex-
ternal noise (% of the interspike intervals below 1ms =0.09 0.19%).
Spiking activity of the direct neuron was detected and sorted in
real time. Online spike trains were convolved with a 200ms
Gaussian?’ to obtain its smoothed instantaneous firing rate. The
smoothed firing rate of the direct neuron was linearly mapped
onto the vertical position of a square on a screen placed in front of
the participant (see ‘Materials and methods’ section). Participants
were instructed to try and move the block above a white horizontal
line (threshold). Maintaining the box above threshold for over half
a second indicated success. A successful trial message was dis-
played, followed by a distractor question, after which the next trial
was triggered. In this way, it was ensured that each trial ended in a
success. Testing was divided into blocks of 10 trials, and the partic-
ipants were asked to finish the 10 trials in 10 min or less. To keep
the participants motivated, we increased the difficulty of the next
block of trials (by moving up the target line) if the previous 10 trials
were completed in <5min. Learning was evaluated post hoc by
analysing changes in the average and peak firing rate of the
trained neuron as a function of the trials. Eleven participants
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completed a total of 17 sessions, where they controlled a different
direct neuron in each session. Since each session involved control-
ling a different neuron, each session was treated as an independ-
ent session.

All participants completed at least 30 trials (57 22 trials) in
which they upregulated the activity of the direct neuron to com-
plete each trial (Fig. 2A and C, top). Interestingly, the firing rate of
the population of other neurons recorded from the same bundle of
microwires as the direct neuron (henceforth called indirect neu-
rons) did not change before successful completion of the trial (Fig.
2A). Similarly, we did not observe a significant change in the firing
rate of the 743 indirect neurons recorded from other microwire
bundles throughout the brain before successful trial completion
(Supplementary Fig. 1A). The indirect neurons were also well iso-
lated (SNR =3.98 1.72) and largely free of noise (%interspike inter-
vals below 1ms=0%). To further quantify task-contingent
changes in firing rate, we calculated the MD of the direct neu-
rons,'® defined as the average firing rate in the one second window
before success minus the average firing rate in the 1-s window
after success. If success were triggered by random bursts of activ-
ity, the MD would be close to zero since the bursts would probably
continue into the post-success period. To the contrary, we saw a
sharp decline in the activity of the direct neurons immediately fol-
lowing success (Fig. 2B), resulting in a MD significantly >0
(P < 0.001, single sample t-test). To determine whether this type of
upregulation was specific to the direct neuron, we calculated the
MD of indirect neurons. Indirect neurons’ firing rates were neither
task contingent, nor modulated with the direct neuron as evi-
denced by their MD being close to zero (Fig. 2B and Supplementary
Fig. 1). While the population of indirect neurons as a whole was
not modulated by the task, it may be possible that individual indir-
ect neurons were task contingent (i.e. comodulated along with the
direct neuron). To determine whether an individual indirect neu-
ron was significantly modulated by the task, we calculated the
average MD of each indirect neuron in a 2-s window centred on
trial completion (same as before for direct neurons). We then gen-
erated a null distribution of average MDs for each neuron by ran-
domly sampling time points matching the number of trials in each
session, calculating the MD in a 2-s window around each time
point and averaging these MDs. This was repeated 1000 times to
generate a null distribution. An indirect neuron was labelled as
significantly modulated if its actual MD was >97.5th or <2.5th
percentile of the null distribution of MDs. In doing so, we found
that while most indirect neurons (101/116 or 87.1%) did not show
any significant modulation around trial completion, a small frac-
tion (15/116, or 12.9%) had firing rates that were significantly
modulated around trial completion. When restricting this analysis
to the ‘late’ trials (i.e. the last 15 trials), an even lower number of
neurons (10/116, or 8.6%) appeared to be modulated around trial
completion. We also simulated the task using the activity of each
indirect neuron to determine what percentage of indirect neurons
could complete each trial before the direct neurons. Although a
relatively large proportion of indirect neurons were upregulated
before the direct neuron in the early stages of learning, successful
learning decreased this proportion significantly, pointing to the
acquired volitional and specific control over the activity of the dir-
ect neuron (Supplementary Fig. 3).

To keep participants motivated we ‘staircased’ the difficulty of the
neurofeedback task, i.e. increased the difficulty as the participants
became more adept at the task. Thus, instead of using time-to-suc-
cess as a primary measure of learning, we evaluated learning by
observing changes in the firing rate of the direct neuron over the
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Figure 2 Learning to upregulate the activity of direct neurons using neurofeedback. (A) Top: Firing rate of the direct neuron increased sharply immedi-
ately before success (t = 0) peaking at 380 ms before success, and returned to baseline immediately after success. Firing rate of indirect neurons was
not modulated in the same epoch around success. Bottom: Modulation depth of direct neurons is significantly >0 (P < 0.001, single sample two-tailed
t-test) and significantly greater than that of indirect neurons (P < 0.001, independent samples t-test). Outliers are removed using the Grubbs method.
(B) Representative spike rasters across all trials from a representative session. Top (black) panel shows the spike raster of the direct neuron, and
bottom two (yellow) panels show the spike rasters of neighbouring indirect neurons recorded from the same bundle as the direct neuron. (C)
Representative learner and non-learner sessions. A significant positive slope in the regression line between trial number and peak or average firing
rate in each trial results was considered a learner session. All other sessions were defined as non-learner sessions. (D) Anatomical distribution of
the direct neurons, colour-coded to match whether the session was a learner or non-learner. (E) Changes in the firing rate (top) and burst frequency
(bottom) of direct neurons within a single session grouped by learner and non-learner sessions. Firing rate increased from the early to late trials in the
learner sessions (P = 0.024, paired t-test, Cohen’s D = 0.8591), and so does burst frequency (P = 0.019, paired t-test, Cohen’s D = 0.90). Changes in the fir-
ing rate (P = 0.21, paired t-test, Cohen’s D = 0.54) and burst frequency (P = 0.20, paired t-test, Cohen’s D = 0.61) are not evident for the non-learner ses-
sions. (F) Same as in E, but for indirect neurons. Firing rate and burst frequency do not change in learner sessions (firing rate: P = 0.99, Wilcoxon
Signed-Rank Test, common language effect size = 0.52); burst frequency: P = 0.98, paired t-test, Cohen’s D = 0.0034), but increase significantly for the
non-learner sessions (firing rate: P = 0.018, paired t-test, Cohen’s D = 0.31; burst frequency: P = 0.045, paired t-test, Cohen’s D = 0.26). (G) Change (late
minus early) in spike correlations between the direct neuron and the neighbouring indirect neurons recorded from the same bundle of microwires.
Correlations with neighbouring neurons decreased significantly in the learner sessions (P = 0.0094, single sample two-tailed t-test), and increased sig-
nificantly in the non-learner sessions (P = 0.0013, single sample two-tailed t-test). Change in correlation is significantly different between the learner
and non-learner sessions (P < 0.001, independent samples t-test). *P < 0.05, ™P < 0.01 and ***P < 0.001; n indicates the number of neurons.
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course of each session.” ‘Learner’ sessions were defined as those
sessions where there was significant upregulation of the average
and/or peak firing rate of the direct neuron as a function of time
during the session. To do this, we performed a linear regression
between the average and peak firing rate of the direct neuron as a
function of trial number. Sessions were defined as learner sessions
if there was a significantly positive trend in either the peak or
average firing rate of the direct neuron (Fig. 2D; see ‘Materials and
methods’ section for more details). With this definition, we
defined 10 sessions as learners (across seven patients) and the
remaining seven sessions as non-learners (see Table 1 for partici-
pant demographics). It should be noted that, by definition, every
trial ended in a success. However, the success could be triggered
by a random, spontaneous burst of activity of the direct neuron (as
is the case throughout the non-learner sessions) or a volitionally
driven upregulation of the direct neuron firing (as is the case in the
learner sessions). In the non-learner sessions, individuals are un-
able to volitionally upregulate the activity of the direct neuron,
thus there is no increase in the average firing rate or burst fre-
quency of the direct neuron (Fig. 2C, E and F). Early in the learner
sessions, success is probably driven by random bursts of activity,
but as learning occurs, individuals are able volitionally modulate
the activity of the neuron to increase its firing rate (Fig. 2E) as well
as burst frequency (Fig. 2F) to complete the trials more rapidly
(Supplementary Fig. 2). These findings agree well with the general
observation that neuroprosthetic skill learning is not uniformly
acquired.?*>%3* While the ‘staircased’ difficulty in this task made it
impossible to analyse the time-to-completion over the entirety of
each session, we investigated sessions that had at least 20 con-
secutive trials where the difficulty was kept the same. We ana-
lysed the time-to-completion in these contiguous trials using a
non-linear, exponential decay regression model and found that
the time-to-completion decayed in learner sessions, but not in
non-learner sessions (Supplementary Fig. 2). Thus, while all partic-
ipants were able to upregulate the activity of the direct neurons,
only during some sessions were they able to improve their per-
formance in the task. Although we did not have sufficient data to
interrogate the role of anatomic specificity in successful and un-
successful learning, we did investigate whether the hemispheric
localization of the direct neuron was correlated with the ability to
‘learn’ the task. To do this, we performed a chi-square test for as-
sociation between learning (yes versus no) and hemisphere (left
versus right). There was no significant association between learn-
ing and hemispheric localization of the direct neuron (Pearson chi-
square value: 2.837, P = 0.092, Cramer’s V = 0.408). Furthermore, we
also asked whether the cellular morphology and/or firing charac-
teristics of the direct neuron influences the ability to learn the
task. To do this, we performed a binary logistic regression with
learning outcome (i.e. learner versus non-learner) as the re-
sponse/dependent variable and various cellular morphology and
firing characteristics as the covariates (see Supplementary Fig. 4
for details). Although this model was significant, the only mean-
ingful predictor of learning was the baseline firing rate of the dir-
ect neuron (B = 2.246, odds ratio = 9.45, P = 0.071). Separately, we
found that the baseline firing rate of the direct neuron in the
learner sessions was significantly higher than the baseline firing
rate in the non-learner sessions, providing further evidence that
direct neurons with higher baseline firing rates may be easier to
further upregulate (see Supplementary Fig. 4 for details).

As expected by the definition of the learner and non-learner
groups, the average firing rate of the direct neuron in learner
sessions was significantly higher in the later trials (i.e. the last 15
trials) compared to the early trials (i.e. the first 15 trials) (Fig. 2F,
top). The burst frequency of the direct neurons (calculated using a
modified Poisson-surprise method) also increased significantly in
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the learner sessions but not in the non-learner sessions (Fig. 2F,
bottom). Indirect neurons demonstrated the opposite trend, with
average firing rate and burst frequency increasing (by a small al-
beit significant magnitude) in the non-learner sessions, but not in
the learner sessions (Fig. 2G). The firing rate or burst frequency of
indirect neurons recorded from other brain regions did not change
from early to late trials in learners or non-learners (Supplementary
Fig. 1C and D). These data reveal a stark dissociation between
neural activity of the direct and indirect neuronal populations,
where during learner sessions, participants selectively modulate
the activity of the direct neurons and in non-learner sessions they
unknowingly modulate the activity of neighbouring neurons,
while failing to specifically modulate the direct neuron. Thus,
learning is accompanied by selective, volitional control over the
direct neuron, whereas unsuccessful learning is characterized by
non-specific modulation of the entire neural subpopulation con-
sisting of both direct and indirect neurons. This dissociation is fur-
ther exemplified by the decorrelation of the activity of the direct
neuron from the neighbouring indirect neurons in the learner ses-
sions, and an increase in this correlation in the non-learner ses-
sions (Fig. 2H). This finding mirrors similar findings reported using
calcium imaging studies in rodents.®°

During similar neuroprosthetic skill acquisition in rodents, learn-
ing is accompanied by increased corticostriatal communication
evidenced by corticostriatal coherence observed in the LFP,'" as
well as SFC between cortical neurons and striatal oscillations and
vice versa.'®? Striatum is not a clinical target in intracranial EEG
recordings in epilepsy patients, and thus we were unable to test
the hypothesis of striatal communication in the volitional control
of individual neurons in humans. However, we used rodent SFC
findings to motivate a similar analysis to infer ‘communication
through coherence’ if such SFC was observed. Towards this end
we computed the SFC between direct neurons and LFPs recorded
by the closest macro contact of the Behnke-Fried electrode (local
LFP; Fig. 3A). For learners we found a significant increase in the
SFC in the 10-20 Hz range immediately before success (Fig. 3A and
B), while the non-learner population displayed no such increase in
SFC. The differences were most pronounced in the 12-15 Hz fre-
quency range (Supplementary Fig. 5). The ability to learn this skill
is thus associated with a unique electrophysiological state of the
brain,?® evidenced by increased SFC in the beta-frequency range
that is different from other ‘learning’ states of the human brain
where theta appears to play an almost exclusive role.>”*°

Since most indirect neurons are not task relevant (their firing
rates did not contribute to success), we anticipated that these in-
direct neurons would not develop the same learning-related SFC
that was observed for direct neurons. To test this hypothesis, we
calculated the SFC for indirect neurons to the local LFP and found
no learning-related changes in both the learner and non-learner
populations (Fig. 3C). Before calculating the SFC, the firing rate of
early and late trials were matched using a spike thinning proced-
ure to prevent any biases resulting from unequal firing rates
between the conditions (Supplementary Fig. 6, see the ‘Materials
and methods’ section for details). Phase-related measures can
often be affected by changes in oscillatory power.*! To determine
whether the observed change in learning-related SFC was affected
by spectral power changes, we computed the power spectra in the
same time period in early and late trials. We found no differences
in the power in the 10-20 Hz frequency bands (Fig. 3D and E). We
have shown that visually evoked responses are readily seen in the
medial temporal lobe and associated structures*? that may con-
found SFC estimates. To address this, we subtracted the event-
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Figure 3 Local SFC in the 10-20 Hz range emerges as learning progresses. (A) Coherogram of grand-average SFC of the direct neurons in early (top)
and late (bottom) trials. Schematics of the visual state of the task during each of the relevant periods (below). Note the significant increase in the SFC
in the 10-20 Hz band immediately preceding success (see the Supplementary material for details regarding the SFC calculation). (B) The grand-aver-
age SFC in a 1-s window immediately preceding success. Notice the substantial increase in the SFC in the 10-20 Hz range in the learner sessions, but
not in the non-learner sessions. (C) Percentage (%) change in SFC in the 10-20 Hz range (from early to late trials) in the learner and non-learner ses-
sions, for direct and indirect neurons. For the direct neurons, SFC increased significantly in the learner sessions (P = 0.035, single sample two-tailed t-
test) but not in the non-learner sessions (P = 0.26, single sample two-tailed t-test). The % change in SFC was also significantly higher in learner ses-
sions compared to non-learner sessions (P = 0.032, independent samples t-test). For the indirect neurons, there is no change in the learner (P = 0.76,
Wilcoxon Sign Rank Test) or the non-learner sessions (P = 0.37, Wilcoxon Sign Rank Test). (D) Grand-average power spectra in the 1-s window imme-
diately preceding success for learner (top) and non-learner (bottom) sessions. There were no significant learning-related changes in the power spec-
trum in the presuccess interval, in the 10-20 Hz frequency range. (E) Percentage power change in learner and non-learners is not different from 0
(P =0.85 learners, P = 0.57 non-learners, single sample two-tailed t-test), or from each other (P = 0.53, independent samples t-test). *P < 0.05.

related potential for each LFP channel from each trial before calcu-
lating the coherence values. In doing so, the early to late differen-
ces in the 10-20 Hz SFC persisted in the learner sessions
(Supplementary Fig. 7), providing further evidence that the SFC
observed here was not artefactual in nature. Thus, in the absence
of firing rate changes, power-related changes and evoked
responses, the observed changes in the learning-related SFC are
related to increased precision of spike timing immediately before
success.

Additionally, we observed instances where the same partici-
pant could learn successfully in one session, but not in another
(Table 1). Despite this, we observed the learning-related SFC
changes confined to the learner sessions, suggesting the specificity
of these changes to the act of learning itself, and not to other
demographic factors.

The observed SFC in the beta band might be due to volume con-
ducted low frequency oscillations. To address this specifically we
calculated the SFC between the direct neurons and the LFP at non-
local macroelectrodes throughout the brain (Supplementary Fig.

8). In addition to the increase in the 10-20 Hz frequency band SFC
between the direct and non-local LFP (Supplementary Fig. 8D),
there was an even more profound increase in theta frequency SFC
between the direct neuron and the non-local LFP. Since theta is a
ubiquitous oscillation in the human brain,*® including the human
hippocampus®**> and more likely to contribute to volume conduc-
tion,** the beta-frequency learning related SFC appears to be both
specific in frequency range and local to the direct neuron during
neuroprosthetic skill learning.

Since the participants were asked to hold the square above the
threshold for >500ms, we wondered whether the observed SFC in
the period immediately before success was driven by a reward an-
ticipation mechanism.*® To test this theory, we extracted epochs
around unsuccessful threshold crossings, i.e. points in time when
the firing rate of the direct neuron crossed the threshold but for an
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insufficient time to trigger a successful trial. We hypothesized that
if the 10-20 Hz SFC we observed in the presuccess period was in-
deed the result of an anticipatory reward mechanism, we would
observe a similar increase in the 10-20 Hz SFC immediately after
unsuccessful threshold crossings. Arguing against such an anticipa-
tory reward mechanism, the spike-field coherogram of the threshold
crossing-aligned epochs (Fig. 4A) did not demonstrate an increase in
the 10-20 Hz SFC immediately after threshold crossings (Fig. 4B, top).
Furthermore, there was no change in the SFC in this frequency band
in the post-threshold crossing window between the early and late
trials (Fig. 4C) for learners and non-learners, confirming that this
type of reward anticipation does not drive the learning-related SFC
changes observed in the success aligned epochs.

We did observe a significant increase in the delta-band (1-3 Hz)
SFC immediately following threshold crossings (Fig. 4B). This find-
ing was concordant with the increased delta SFC observed in the
window immediately surrounding success (Fig. 3A). To determine
whether this delta SFC was learning related, we compared the SFC
in the post-threshold crossing window in the early versus the late
trials (Fig. 4C). We observed no significant difference in the delta
SFC in this window in the early versus late trials (for learners and
non-learners), suggesting that the delta SFC was not learning
related and was probably related to the design of the neurofeed-
back task. Consistent with this hypothesis the delta-SFC increase
was associated with a delta power increase in a similar time win-
dow (Supplementary Fig. 9). This suggests that the observed delta-
SFC increase is probably driven by the image onset evoked re-
sponse due to the colour change of the square from red to purple
when it crosses the threshold* rather than either anticipatory re-
ward or a learning-related mechanism.

Discussion

Here we demonstrate, using a visual neurofeedback task, that
humans can learn to upregulate the activity of arbitrarily chosen
neurons in memory-related structures of their brain in a highly
specific and volitional manner. Our results greatly extend non-
human primate and rodent single neuron neuroprosthetic skill
learning that has been explored in sensorimotor and associational
structures, by showing uniquely that instrumental learning at the
singe neuron level can occur in mnemonic structures.
Additionally, these findings bridge an important gap in rodent and
non-human primate neuroprosthetic skill learning and human
learning, by showing that in humans such learning can occur in
limbic and other mnemonic structures.

A large body of existing literature provides evidence for this
type of neuroprosthetic skill learning in the motor cortex of
rodents®*>% and primates.®”*”~*° Early work by Fetz and col-
leagues showed that macaques can be operantly conditioned to
control firing rates of individual units in the motor cortex.®’
Although this control was volitional, it was not highly specific to
the trained neuron. They found that in about half of the recorded
pairs of neurons (in which one neuron was trained and the other
was simply recorded), activity was highly correlated during the
task.® Contrary to this, we found that the volitional control of dir-
ect neurons in our task was highly specific (Fig. 2A and B). While
we found a small fraction of recorded indirect neurons (12.9%) that
were significantly modulated around trial completion, as a popula-
tion, these neurons did not show significant modulation. These
findings agree well with recent evidence from rodent in vivo cal-
cium imaging studies.®*° Clancy and colleagues® used two-pho-
ton imaging in the motor and somatosensory cortex to show that
as learning progresses, direct neurons develop coordinated activity
patterns. While indirect neurons in the immediate vicinity of the
direct neurons were modulated around target hits at the beginning
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Figure 4 Unrewarded threshold crossings do not result in a change in
SFC in the 10-20 Hz band. (A) Spectrogram showing the SFC between
the direct neurons and the local LFP aligned to unrewarded threshold
crossings. Notice that there is no significant increase in SFC in the 10-
20 Hz range following the threshold crossings. (B) Average of SFC in the
10-20 Hz band (top) and 1-3 Hz band (bottom) across session (average
traces were obtained by averaging the mean, band-limited SFC within
each session, and then averaging these mean traces across sessions).
Note that SFC does not increase in the 10-20 Hz band following thresh-
old crossings, but it does increase significantly following threshold
crossings in the 1-3 Hz band (significant portions indicated with a bold
line on top of the graph, P < 0.05 non-parametric permutation testing
with random time shuffles, 2000 iterations). (C) Change in SFC between
early and late trials in the 10-20 Hz and 1-3 Hz frequency ranges for
learners and non-learners. No significant changes observed (10-20 Hz:
learner, P = 0.37, non-learner P = 0.20 single sample two-tailed t-test; 1-
3 Hz: learner, P = 0.45; non-learner, P = 0.99, single sample two-tailed t-
test). No learning-related changes in SFC observed in either frequency
band following threshold crossing.

of training, this task-related modulation disappears as learning
progresses. Prsa and colleagues,® who also used a similar behav-
ioural model, corroborated these findings. In our work, similarly,
we show that direct neurons become decorrelated with the local
indirect neuronal population as learning progresses (Fig. 2H).
Fascinatingly, this decorrelation only occurred in sessions where
learning was successful. Our findings, along with the emerging
animal literature, point to the ability of upstream circuits to ‘hone
in’ on individual direct neurons and specifically modulate their
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activity to efficiently modulate the feedback.2***! In conjunction
with previous single-cell stimulation experiments that point to the
ability of downstream circuits to read-out activity of individual
neurons,*? our results emphasize the importance and relevance of
the activity of individual neurons.

Our findings, that only some neurons can be volitionally con-
trolled (learner sessions), also agree well with the rest of the brain-
machine interface (BMI) field.?**¢>3 Sadtler and colleagues®?
used a brain-computer interface in Rhesus macaques to beautiful-
ly demonstrate that animals could easily and robustly generate ar-
bitrary activity patterns, as long as they were within the ‘intrinsic
manifold’ of possible activity patterns. This intrinsic manifold
comprises the characteristic, low-dimensional activity patterns of
the local subpopulation of neurons, and is probably constrained by
the inherent connectivity within this subpopulation. Generating
activity patterns outside this manifold is more difficult and may
require greater amounts of training.**® Athalye and colleagues®
also recently demonstrated that certain groups of mice can robust-
ly modulate specific patterns of neural activity, whereas other
mice cannot. This may also be attributed to the targeted activity
falling outside of the intrinsic manifold for the non-learning mice.
It is important to note that learning is also constrained by the dur-
ation of our sessions (which typically lasted <1 h). Non-learner
sessions may turn into learner sessions given sufficient time and
training. Presumably, the targeted activity of the direct neurons
falls outside of the intrinsic manifold, and thus would require
more time and training. In the context of motor control and motor
skill learning, the intrinsic manifold can be thought of as the set of
existing muscle synergies, which correspond to coordinated
groups of muscles with specific amplitude weights.>* Thus, learn-
ing a new motor skill is easier if the skill can be produced by a new
combination of existing muscle synergies (i.e. learning within the
intrinsic manifold). However, learning a motor skill that is incom-
patible with the existing set of muscle synergies is more difficult
and may require more time (i.e. learning outside the intrinsic
manifold).

In our work, we found select cases where the same subject
could modulate activity of one neuron in a particular brain region,
but not of another from the same region. This suggests that brain
localization and patient-specific demographics (such as age, sex,
years of education, number of anti-epileptic drugs, years of seiz-
ures, etc.) probably do not play a critical role in determining
whether a session will be a learner or a non-learner. Instead, the
ability to learn probably depends on the location of a neuron with-
in an intrinsic manifold (as discussed previously), and also add-
itional situational factors such as attention, motivation,>® sleep
and fatigue,”® and mood.””**® We also found that learning may be
influenced by the baseline firing rate of the direct neuron
(Supplementary Fig. 4). Learner sessions typically had higher firing
rates than non-learner sessions. A neuron with a high baseline fir-
ing rate may have a higher firing rate ceiling, making it potentially
easier to upregulate. In other words, high firing rates of these neu-
rons probably fall into the intrinsic manifold. Similar to this find-
ing, Best and colleagues® previously reported that narrow spiking
neurons with high firing rates consistently decoded motor param-
eters better than broad spiking neurons with lower firing rates.

In animals, control at the single neuron level in the motor cor-
tex has been shown to require the dorsal striatum,**? which
serves as an input tier for the basal ganglia. Hence, neuropros-
thetic skill learning in the motor cortex is largely analogous to
motor learning, in which cortico-basal ganglia loops facilitate an
action selection process where competing motor programs are ei-
ther inhibited or released from inhibition. This is facilitated by par-
allel direct and indirect pathways that allow disinhibition and
inhibition, respectively, of neuronal ensembles in the
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sensorimotor cortices, allowing for selection of a contextually rele-
vant motor program.®® Similar cortico-basal ganglia loops are
implicated in selection and generation of a variety of different cog-
nitive patterns that may facilitate more abstract skill learning.®* In
fact, recent rodent studies provide convincing evidence that ani-
mals can modulate highly specific neuronal activity in primary
sensory cortex that again is dependent on the dorsal striatum,
similar to learning in the motor cortex. Since most of the neocor-
tex projects to the dorsal striatum,'*®? we anticipate that this type
of neuroprosthetic skill learning may be possible in most of the
neocortex.

In this study, however, we demonstrate that this type of learn-
ing is also possible in the paleo-cortex of the human brain, as well
as other non-motor, non-sensory regions. These structures are
largely dissociated from the dorsal striatal system.* However, des-
pite this dissociation, we demonstrated that participants learned
to modulate activity in a specific and volitional manner, much like
other neocortical regions explored in non-human primates and
rodents. Motor skill learning, and neuroprosthetic skill learning,
proceeds in a prototypical manner, where the early phase of learn-
ing is characterized by a rapid acquisition of task parameters, fol-
lowing by a slower refinement process.’®*%¢ The experimental
sessions in this study were not long enough to investigate the later
stages of learning, but we robustly demonstrate the early stage of
learning, characterized by rapid changes in the firing characteris-
tics of the direct neurons. While limbic structures do not directly
project to the dorsal striatum, they do project heavily to the ven-
tral striatum. In fact, the ventral striatum is thought to serve as
the interface between the limbic and motor systems.?*®* So, is it
possible that the type of neuroprosthetic skill learning that we
demonstrate here is facilitated by the ventral striatum instead?

While we cannot answer this question by directly recording ac-
tivity from the ventral striatum in humans, we sought out neural
signatures of this interaction. Neely and colleagues’® previously
demonstrated that neuroprosthetic skill learning in the primary
visual cortex increasingly recruited the striatum. With knockout
experiments, they further demonstrated that the dorsomedial stri-
atum (which receives direct projections from V1) was essential for
the acquisition of such neuroprosthetic skill. In their work, a
prominent neural signature of this striatal involvement was
increased SFC between the spiking activity of the direct neuron
and LFPs in the 10-25 Hz band. In our work, we observed a similar
increase in SFC in the high alpha/low beta (10-20 Hz) bands as
learning progressed. This increase in SFC was independent of
power or firing rate changes, was specific to the direct neurons
and occurred only in learning sessions. Since oscillations in this
frequency band are rarely observed in the medial temporal lobe
(where delta, theta and gamma oscillations dominate**®* %) this
observed SFC is probably the result of an external influence on the
local hippocampal oscillations. In rodents, Lansink and col-
leagues®® demonstrated that beta oscillations in the hippocampus
can be driven by reward-predictive cues, and enhanced by learn-
ing. They also demonstrated that hippocampal spiking activity can
be phase-locked to the underlying beta oscillations by reward-pre-
dictive cues. Furthermore, they demonstrated that learning can
also increase SFC between neurons in the ventral striatum and
beta oscillations in the hippocampus. Thus, beta oscillations in the
hippocampus and related structures may be driven by a reward
prediction mechanism, potentially driven by the ventral tegmental
afferents to CA1,%” or indirectly from the striatum via the ventral
pallidal-mediodorsal thalamic route.®® Furthermore, the observed
SFC is unlikely related to attentional modulation, since attention
has actually been shown to decrease the alpha/beta band SFC in
the visual cortex.® Taken together, the learning-specific SFC
observed in this study probably implicates the ventral striatum in
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this type of neuroprosthetic skill learning in mnemonic structures.
Although this argument is largely speculative, anatomical con-
nectivity of limbic structures to the ventral striatum provides add-
itional supporting evidence.

One of the canonical characteristics of the cortico-basal ganglia
loops is the presence of parallel inhibitory and disinhibitory path-
ways,?>’° which allow the basal ganglia to play a role in selection
of context relevant motor plans or even cognitive strategies.®* The
medium spiny neurons (MSNs), which are ubiquitous within the
basal ganglia, are furnished with dopamine receptors in close
proximity to the corticostriatal terminals.”* Dopaminergic innerv-
ation of these MSNs by the midbrain dopaminergic system facili-
tates plastic synaptic changes that shapes the striatal and
resulting basal ganglia outputs, playing a role in facilitating re-
ward-based learning. Interestingly, the ventral striatum is also
known to form cortico-basal ganglia loops,”® with a variety of lim-
bic structures and the anterior cingulate cortex as its primary in-
put and output.”*’?7* Since the MSNs that compose much of the
striatum are difficult to excite,®® convergent input from the limbic
structures and the anterior cingulate cortex could drive ventral
striatal MSNs, activating a series of parallel inhibitory and disinhi-
bitory circuits that can be actively tuned via the midbrain dopa-
minergic system to facilitate reward-based learning of precise
limbic activity patterns. Future work in animal models will certain-
ly focus on interrogating this limbic-basal ganglia circuitry to
establish the significance of the ventral striatum in facilitating
this type of limbic neuroprosthetic skill learning.

It is important to contrast the work presented here from the
recent developments in the field of BMIs. In traditional BMIs, the
machine learns to decode an intent from a particular set of neural
activity, and then generates a control signal to perform a particular
behaviour. Due to significant technical advancements over the
past two decades, the complexity of neural activity that we can
record and decode information from continues to grow, leading to
remarkable clinical possibilities such as the ability to control
complex robotic arms,”” reanimate limbs’>’® and even decode
handwriting with a high degree of accuracy.”” Compared to this,
modulation of a single neuron to control one-dimensional move-
ment of a block on a screen may seem paltry. However, there is a
major conceptual difference between the approach taken in this
paper and the traditional field of BMIs. Whereas traditional BMIs
are concerned with maximizing decoding performance, our inten-
tion is to use BMIs to interrogate basic neuroscience questions. In
our approach, which was pioneered by Fetz and colleagues, we
emphasize the brain, rather than the machine, as the primary
learning entity. The algorithm that maps the selected neural activ-
ity to the defined behaviour is extremely simple and static, but the
onus is on the conscious brain to learn to modulate itself to
achieve a particular behaviour. BMIs are unique in the sense that
they enforce a genuinely causal, rather than merely correlative
link between a particular neural activity and the corresponding be-
haviour. This allows us to study old concepts of learning and plas-
ticity with new methodology. This is even more true in our case,
where the activity to be modulated resides in mnemonic struc-
tures. In our experiments, the brain as an observer learns to modu-
late activity in these structures in a likely striatal/basal ganglia
dependent manner. However, these structures themselves are
involved in a variety of mnemonic and learning-related processes.
Hence, our work opens up a brand-new avenue of questioning:
how do these traditionally distinct learning systems (i.e. the basal
ganglia and the medial temporal lobe) interact? Can they be
forced to cooperate or compete? What effect does this interaction
have on downstream behaviour? These are the types of question
that we can begin to address with the type of methodology
presented here.
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The data presented here indicate that single neuron activity in
limbic and other memory-related structures can be precisely regu-
lated in a rapid, highly specific and volitional manner in humans.
Furthermore, this type of neuroprosthetic skill learning in limbic
structures is probably facilitated by the limbic-basal ganglia circu-
ity involving the ventral striatum. Such, high-fidelity self-regula-
tion of neural activity may provide an avenue for the development
of novel neuroprosthetics for the treatment of neurological condi-
tions that commonly present with pathological activity in limbic
structures, such as medically refractory epilepsy. Furthermore,
since limbic structures, and particularly those of the medial tem-
poral lobe, are critical to mnemonic processes, obtaining volitional
control over highly specific activity in these structures may pro-
vide a mechanism of probing the function and plasticity of these
brain structures without exogenous stimulation.
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